Специальное предложение

Правило Лопиталя для чайников: определение, примеры решения, формулы

Содержание:
  • 12 Январь 2021
  • 8 минут
  • 39 117

пределы правило лопиталя

Мы уже начали разбираться с пределами и их решением. Продолжим по горячим следам и разберемся с решением пределов по правилу Лопиталя. Этому простому правилу по силам помочь Вам выбраться из коварных и сложных ловушек, которые преподаватели так любят использовать в примерах на контрольных по высшей математике и матанализу. Решение правилом Лопиталя – простое и быстрое. Главное – уметь дифференцировать.

Правило Лопиталя: история и определение

На самом деле это не совсем правило Лопиталя, а правило Лопиталя-Бернулли. Сформулировал его швейцарский математик Иоганн Бернулли, а француз Гийом Лопиталь впервые опубликовал в своем учебнике бесконечно малых в славном 1696 году. Представляете, как людям приходилось решать пределы с раскрытием неопределенностей до того, как это случилось? Мы – нет.

Кстати, о том, какой вклад внес в науку сын Иоганна Бернулли, читайте в статье про течение жидкостей и уравнение Бернулли.

Пределы
Пределы

Прежде чем приступать к разбору правила Лопиталя, рекомендуем прочитать вводную статью про пределы в математике и методы их решений. Часто в заданиях встречается формулировка: найти предел, не используя правило Лопиталя. О приемах, которые помогут Вам в этом, также читайте в нашей статье.

Если имеешь дело с пределами дроби двух функций, будь готов: скоро встретишься с неопределенностью вида 0/0 или бесконечность/бесконечность. Как это понимать? В числителе и знаменателе выражения стремятся к нулю или бесконечности. Что делать с таким пределом, на первый взгляд – совершенно непонятно. Однако если применить правило Лопиталя и немного подумать, все становится на свои места.

Но сформулируем правило Лопиталя-Бернулли. Если быть совершенно точными, оно выражается теоремой. Правило Лопиталя, определение:

Если две функции дифференцируемы в окрестности точки x=a обращаются в нуль в этой точке, и существует предел отношения производных этих функций, то при х стремящемся к а существует предел отношения самих функций, равный пределу отношения производных.

Запишем формулу, и все сразу станет проще. Правило Лопиталя, формула:

пределы правило лопиталя

Так как нас интересует практическая сторона вопроса, не будем приводить здесь доказательство этой теоремы. Вам придется или поверить нам на слово, или найти его в любом учебнике по математическому анализу и убедится, что теорема верна.

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Раскрытие неопределенностей по правилу Лопиталя

В раскрытии каких неопределенностей может помочь правило Лопиталя? Ранее мы говорили в основном о неопределенности 0/0. Однако это далеко не единственная неопределенность, с которой можно встретиться. Вот другие виды неопределенностей:

пределы с помощью правила лопиталя

Рассмотрим преобразования, с помощью которых можно привести эти неопределенности к виду 0/0 или бесконечность/бесконечность. После преобразования можно будет применять правило Лопиталя-Бернулли и щелкать примеры как орешки.

Неопределенности
Неопределенности

Неопределенность вида бесконечность/бесконечность сводится к неопределенность вида 0/0 простым преобразованием:

правило лопиталя раскрытия

Пусть есть произведение двух функций, одна из которых первая стремиться к нулю, а вторая – к бесконечности. Применяем преобразование, и произведение нуля и бесконечности превращается в неопределенность 0/0:

правило лопиталя раскрытия

Для нахождения пределов с неопределенностями типа бесконечность минус бесконечность используем следующее преобразование,  приводящее к неопределенности 0/0:

правило лопиталя раскрытия

Для того чтобы пользоваться правилом Лопиталя, нужно уметь брать производные. Приведем ниже таблицу производных элементарных функций, которой Вы сможете пользоваться при решении примеров, а также правила вычисления производных сложных функций:

Таблица производных
Таблица производных

Теперь перейдем к примерам.

Пример 1

Найти предел по правилу Лопиталя:

найти указанные пределы используя правило лопиталя

Пример 2

Вычислить с использованием правила Лопиталя:

найти указанные пределы используя правило лопиталя

Важный момент! Если предел вторых и последующих производных функций существует при х стремящемся к а, то правило Лопиталя можно применять несколько раз.

Найдем предел (n – натуральное число). Для этого применим правило Лопиталя n раз:

найти указанные пределы используя правило лопиталя

Желаем удачи в освоении математического анализа. А если Вам понадобится найти предел используя правило Лопиталя, написать реферат по правилу Лопиталя, вычислить корни дифференциального уравнения или даже рассчитать тензор инерции тела, обращайтесь к нашим авторам. Они с радостью помогут разобраться в тонкостях решения.

Навигация по статьям
Доверь свою работу кандидату наук!
  • 01
    Предоплата всего 25%
  • 02
    Шпаргалки в подарок!
  • 03
    Сопровождение до защиты
Узнай бесплатно стоимость работы
Посмотрите примеры наших работ
  • Экономика предприятия
    Экономика предприятия

    Выявление направлений улучшения финансового состояния организации

    • Вид работы:

      Отчёт по практике

    • Время выполнения:

      10 дней

    • Стоимость заказа:

      2 000 руб

    Смотреть работу в PDF
  • Геология
    Геология

    Геологическая позиция разломов. Разделение шовных зон

    • Вид работы:

      Реферат

    • Время выполнения:

      1 дней

    • Стоимость заказа:

      800 руб

    Смотреть работу в PDF
  • Физкультура и спорт
    Физкультура и спорт

    Классификация техники и тактика игры в баскетбол

    • Вид работы:

      Реферат

    • Время выполнения:

      2 дней

    • Стоимость заказа:

      900 руб

    Смотреть работу в PDF
  • Психология
    Психология

    Виды психологического консультирования и их специфика

    • Вид работы:

      Контрольная работа

    • Время выполнения:

      2 дней

    • Стоимость заказа:

      500 руб

    Смотреть работу в PDF
  • Социальная психология
    Социальная психология

    Детская ложь и ее социально-психологические корни

    • Вид работы:

      Контрольная работа

    • Время выполнения:

      5 дней

    • Стоимость заказа:

      600 руб

    Смотреть работу в PDF